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Controlling chaos in electronic circuits

By MACIEJ J. OGORZALEK

Department of Electrical Engineering, University of Mining and Metallurgy,
al. Mickiewicza 30, 30-059 Krakéw, Poland

Chaotic oscillations in electronic circuits are rather an unwanted phenomenon. We
describe various control concepts the goal of which is to suppress chaos and to achieve
a desired type of dynamic behaviour such as stable fixed point or a periodic orbit.
The control concepts described here include: (i) system parameter variation; (ii)
chaotic oscillation absorber; (iii) entrainment; (iv) linear feedback control; (v) time-
delayed feedback, (vi) methods for stabilizing unstable periodic orbits: occasional
proportional feedback and sampled input waveform methods. Advantages and draw-
backs of these methods are described. Control towards chaotic states having several
potential applications is also considered.

1. Introduction

Research efforts during the past decade have lead to a general understanding of a
variety of nonlinear phenomena in electronic circuits. In particular many unwanted
phenomena as excess noise, false frequency lockings, squegging, phase slipping have
been found to be associated with bifurcations and chaotic behaviour. Also many
nonlinear phenomena in other science and engineering disciplines have a strong link
with ‘electronic chaos’; let us mention here the most spectacular ones: heart fib-
rillation (electrocardiogram patterns) and epileptic waveforms in electroencephalo-
graphic patterns. Chaos, so commonly encountered in electronic circuits and systems,
represents rather a peculiar type of behaviour commonly considered as causing mal-
functioning, disastrous and thus unwanted in most applications. It is obvious that an
amplifier, a filter, an A /D converter, a phase-locked loop or a digital filter generating
chaotic responses is of no use, at least for its original purpose. Similarly we would
like to avoid situations where the heart does not pump blood properly (fibrillation
or arhythmias) or epileptic attacks. Thus a most common goal of control for chaotic
electronic circuits is suppression of oscillations of the ‘bad’ kind and influencing it in
such a way that it will produce a prescribed, desired motion. The goals vary depend-
ing on a particular application. The most common goal is to convert chaotic motion
into a stable periodic or constant one. In some cases elimination of multiple basins
of attraction is desirable. Yet another goal could be tracking (synchronization) to
another kind of chaotic trajectory.

Considering the possibilities of influencing the dynamics of a chaotic circuit one
can distinguish four basic approaches: (i) variation of an existing accessible system
parameter; (ii) change in the system design, modification of its internal structure;
(iii) injection of an external signal(s); (iv) introduction of a controller (classical PI,
PID, linear or nonlinear, neural, stochastic, etc.).
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128 M. J. Ogorzatek

Due to very rich dynamic phenomena encountered in typical chaotic systems, there
exist a large variety of approaches to controlling such systems. This paper presents
selected methods developed for controlling chaos in various aspects, starting from the
most primitive concepts like parameter variation, through classical controller appli-
cations (open- and closed-loop control), to quite sophisticated ones like stabilization
of unstable periodic orbits embedded within the strange attractor.

2. Simple techniques for suppressing chaotic oscillations: change in
the system design

(a) Effects of large parameter changes

The simplest way of suppressing chaotic oscillations is to change the system pa-
rameters (redesign!) in such a way as to produce the desired kind of behaviour. The
influence of parameter variations on the asymptotic behaviour of the system can be
studied using a standard tool used in analysis of chaotic systems, the bifurcation
diagram. Typical bifurcation diagram reveals a variety of dynamic behaviours for
appropriate choices of system parameters and tells us what parameter values should
be chosen to obtain the desired goal behaviour. In electronic circuits changes in
the dynamic behaviour are obtained by changing one of its passive elements values
(which means replacing one of the resistors, capacitors, or in rare cases inductances).
This method, although intuitively simple has a major drawback: it requires large
parameter variations (‘large energy control’). This requirement cannot be met in
many physical systems where the construction parameters are either fixed or can be
changed in very small ranges. This method is also difficult to apply on the design
stage as there are no simulation tools for electronic circuits allowing bifurcation anal-
ysis (e.g. SPICE has no such capability). On the other hand programs offering such
types of analysis require a description of the problem in closed mathematical form
as differential or difference equations. Changes of parameters are even more difficult
to introduce once the circuitry is fabricated or breadboarded and if possible at all
can be done on trial-and-error basis.

(b) ‘Shock absorber’ concept: change in system structure

This simple technique is being used in a variety of applications. The motivation
comes from mechanical engineering where devices absorbing unwanted vibrations are
commonly used (e.g. beds of machine-tools, shock-absorbers in vehicle suspensions,
etc.). The idea is to modify the original chaotic system design (add the ‘absorber’
without major changes in the design or construction) in order to change its dynamics
in such a way that a new stable orbit appears in a neighbourhood of the original
chaotic attractor. In an electronic system the absorber can be as simple as an addi-
tional shunt capacitor or a LC tank circuit. Kapitaniak et al. (1992) proposed such
a ‘chaotic oscillation absorber’ for Chua’s circuit; it is a parallel RLC circuit cou-
pled with original Chua’s circuit via the resistor, depending on its value the original
chaotic behaviour can be converted to a chosen stable oscillation.

3. External perturbation techniques

Several authors have demonstrated that a chaotic system can be forced to perform
in a desired way by injecting external signals that are independent on the internal
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Controlling chaos in electronic circuits 129

variables or structure of the system. Three types of such signal were considered: (a)
aperiodic signals (‘resonant stimulation’); (b) periodic signals of small amplitude; (c)
external noise.

(a) ‘Entrainment’: open loop control

Aperiodic external driving was one of the first methods introduced by Hiibler
(1988) (termed ‘resonant stimulation’) and developed in the works of Hiibler & Jack-
son (see references in Jackson 1991). A mathematical model of the considered ex-
perimental system is needed (e.g. in the form of differential equation: dz/dt = F(z)
x € R", F(z); differentiable, solutions exist for every ¢t > 0).

The goal of the control is to entrain the solution z(t) to an arbitrarily chosen
behaviour g(¢), i.e.

b

lim |z(t) — g(t)] = 0. (3.1)

t—o0

Entrainment can be obtained by injecting the control signal:

dz

3 = F@)+ (g —Flg)l®). (3:2)
The entrainment method has the great advantage that no feedback is required and
no parameters are being changed; thus the control signal can be computed in advance
and no equipment for measurements of the state of the system are needed. The goal
does not depend on the considered system and in fact it could be any signal at all
(except solutions of the autonomous system — for § — F(g) — no control). It should
be noticed, however, that this method has limited application since a good model of
the system dynamics is necessary, and the set of initial states for which the system
trajectories will be entrained is not known.

(b) Weak periodic perturbation

Interesting results have been reported by Breiman & Goldhirsch (1991), who stud-
ied effects of adding a small periodic driving signal in a system behaving in a chaotic
way. They discovered that external sinusoidal perturbation of small amplitude and
appropriately chosen frequency can eliminate chaotic oscillations in a model of the
dynamics of a Josephson junction and cause the system to operate in some stable
periodic mode. Under Hiibler’s direction Kennedy and Kozek built in Chua’s labo-
ratory in 1992 a control system using weak periodic perturbation to stabilize flow in
a dripping faucet. Unfortunately there is little theory behind this approach and the
goal behaviours can be learned by trial-and-error only. Some hope for further under-
standing and applications can be based on using theoretical results known from the
theory of synchronization.

(¢) Noise injection
Noise signal of small amplitude injected in a suitable way into the circuit (system)
offers potentially new possibilities for stabilization of chaos. First observations date
back to the work of Herzel (1988) and effects of noise injection were also studied
in an RC-ladder chaotic oscillator in Ogorzatek & Mosekilde (1989). This approach
although promising needs further investigations as little theory is available to support
experimental observations.

Phil. Trans. R. Soc. Lond. A (1995)
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4. Control engineering approaches

Sevaral attempts have been made to use known methods belonging to the ‘control
engineer’s toolkit’. For example the use of Pl and PID controllers for chaotic cir-
cuits, applications of stochastic control techniques, Lyapunov-type methods, robust
controllers and many other methodologies including intelligent control and neural
controllers have been described in literature (the paper by Chen & Dong (1993) and
ch. 5 in Madan (1993) give an excellent review of applications of such methods). In
electronic circuits two schemes: linear feedback and time-delay feedback seem to find
most successful applications.

(a) Error-feedback control

Several methods of chaos control have been developed which relay on a common
principle that the control signal is some function of the difference between the actual
system output z(t) and the desired goal dynamics y(t). This control signal could
be an actual system parameter: p(t) = ¢(z(t) — y(¢)) as proposed in the ‘adaptive
control scheme’ described by Huberman & Lumer (1990), or additive signal produced
by a linear controller u(t) = K(z(t) — y(¢)) as in the methodology developed by
Pyragas (1992) and Chen & Dong (1993). Using error feedback chaotic motion has
been successfully converted into periodic one both in discrete- and continuous-time
systems. In particular chaotic motions in Duffing’s oscillator and Chua’s circuit have
been controlled/directed towards fixed points or periodic orbits (Chen & Dong 1993).
The important properties of the linear feedback chaos control method are: very simple
structure of controller, access to system parameters is not required. The method is
immune to small parameter variations but might be difficult to apply in real systems
(interactions of many system variables needed). The choice of the goal orbit poses
the most important problem; usually the goal is chosen in multiple experiments or
can be specified on the basis of model calculations.

(b) Time-delay feedback control (Pyragas method)

Pyragas (1992) proposed an interesting feedback structure using a delayed copy
of the output signal. He obtained very promising results in the control of many
different chaotic systems. Despite the lack of mathematical rigour, this method is
being successfully used in several applications. An interesting application of this
technique is described by Mayer-Kress et al. (1993); Pyragas’s control scheme has
been used for tuning chaotic Chua’s circuits to generate musical tones and signals.
More recently Celka (1994) used Pyragas’s method to control a real optical system.

The positive features of the delay feedback control method are: no external signals
injected and no access to system parameters is required. Action of the control is
immune to small parameter variations. In real electronic systems a variable delay
element required is readily available (analogue delay lines are available as of-the-shelf
components). Among drawbacks let us mention that there is no a priori knowledge
of the goal (goal chosen by trial-and-error).

5. Control in terms of stabilizing unstable periodic orbits
(a) Ott-Grebogi-Yorke approach (OGY)

Ott et al. (1990) proposed a feedback method aiming at stabilization of a cho-
scn unstable periodic orbit existing within the attractor (existence of a dense sct
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Controlling chaos in electronic circuits 131

of unstable periodic orbits is one of the key properties of chaotic attractors). To
visualize best how the method works let us assume that the dynamics of the sys-
tem are described by a k-dimensional map: &,.1 = F(&,,p), & € RE. This map in
the case of continuous-time systems can be constructed, for example, by introducing
a transversal surface of section for system trajectories, p is some accessible system
parameter which can be changed in some small neighbourhood of its nominal value
p*. To explain the method we will concentrate now on stabilization of period-one
orbit. Let & = F(&,p*) be the chosen fixed point (period-1) of the map around
which we would like to stabilize the system. Assume further that the position of this
orbit changes smoothly with p parameter changes (i.e. p* is not a bifurcation value),
and there are little changes in the local system behaviour for small variations of p.
In a close vicinity of this fixed point with good accuracy we can assume that the
dynamics is linear and can be expressed approximately by

£n+1 - 5() = A(gn - 60) + g(pn - p*) (51)

The elements of the matrix
oF .
A= 8_5(&)’27 )

and vector
oF y
9= 8_(5()»1? )
P

can be calculated by using the measured chaotic time series and analysing its be-
haviour in the neighbourhood of the fixed point. Further the eigenvalues A, A, and
eigenvectors ey, e, of this matrix can be found. These eigenvectors determine the
stable and unstable directions in the small neighbourhood of the fixed point. Let us
denote by fs, f, the contravariant eigenvectors (fle, = fle, =1, fle, = fle, = 0).
The control idea now is to monitor the system behaviour until it comes close to the
desired fixed point (we assume that the system is ergodic and the trajectory fills
densely the attractor; thus eventually it will pass arbitrarily close to any chosen
point) and then change p by a small amount so the next state &,,; should fall on
the stable manifold of &g, i.e. choose p,, such that f}(ﬁnH — &) =0:

A .
Pn = — ( 19) f;l (gn - f()) +p* (52)

Figure 1 schematically explains the action of the OGY algorithm in the case k = 2.
The OGY technique has the notable advantage of not requiring analytical models of
the system dynamics and is well-suited for experimental systems. One can use either
full information from the process or use delay coordinate embedding technique using
single variable experimental time series (see Dressler & Nitsche 1992). The procedure
can also be extended to higher-period orbits. Any accessible variable (controllable)
system parameter can be used for applying perturbation and the control signals are
very small.

We have carried out an extensive study of application of the OGY technique to
controlling chaos in Chua’s circuit. Using an application-specific software package
(Dabrowski et al. 1994) we were able to find some of the unstable periodic orbits
embedded in the double scroll chaotic attractor and use them further as control goals.
Figure 2 shows the results of stabilization of a period-one and period-two unstable
periodic orbits. Before control is achieved, the trajectories exhibit chaotic transients.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. Schematic explanation of the OGY algorithm; a linear perturbation is applied in
such a way that the successive iterate falls onto the stable manifold of the fixed point.

0.4 1”1 04 —

Ve

~0.4 — ~0.4 —

Figure 2. Double scroll chaotic attractor in Chua’s circuit. Two of the abundance of periodic
orbits that could be stabilized using OGY technique.

When applying the OGY method to control chaos in a real physical circuit the main
problem was the error introduced by: inevitable noise of the circuit elements, A/D
and D/A conversion of signals (quantification), rounding operations in the computer
calculations, etc. The method was found to be very sensitive to the noise level; very
small control signals sometimes are hidden within the noise and control is impossible.

(b) Sampled input waveform method

A very simple, robust and effective method of chaos control in terms of stabilization
of an unstable periodic orbit has been proposed by Dedieu & Ogorzalek (1994). A
sampled version of the output signal corresponding to a chosen unstable periodic
trajectory, uncovered from a measured time series is applied in the chaotic system
causing the system to follow this desired orbit. In real systems this sampled version
of the unstable periodic orbit can be programmed into a programmable waveform
generator and used as the forcing signal. The block diagram of this control scheme
is shown in figure 3.

The sampled input control method is very attractive as the goal of the control
can be specified using analysis of output time-series of the system, access to system
parameters not required. Control is immune to parameter variations, noise, scaling
and quantization — robust operation. Instead of a controller we need a generator
to synthesize the goal signal. Signal sampling reduces the memory requirements for

Phil. Trans. R. Soc. Lond. A (1995)
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<
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sampled waveform generator

y()
linear part of the system
x(t) = Ax(t) + Bu()

y(®) = C'x(9) ¥

nonlinearity

SO

Y

Figure 3. Block diagram of the sampled input chaos control system.

Figure 4. Double scroll chaotic attractor observed in the experimental system and two
examples of controlled orbits.

control .
impulse o chaotic
generator system
A
Y
window return Poincaré
comparator ~ map [ section
detector detector

offset - goal position
Figure 5. Block diagram of the OPF chaos controller.

the generator. Figure 4 shows the chaotic attractor and two sample orbits controlled
within the chaos range.

(¢) Occasional proportional feedback: analogue circuitry for chaos control

In real applications, a ‘one-dimensional’ version of the OGY method — the so-called
occasional proportional feedback (oPF) method — has proven to be most efficient. This
method has been successfully implemented in a continuous-time analogue electronic

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 6. Chaotic attractor observed in the Colpitts oscillator and two of the controlled
periodic orbits.

circuit and used in a variety of applications ranging from stabilization of chaos in
laboratory circuits (Hunt 1993) to stabilization of chaotic behaviour in lasers (Cor-
coran 1992; Roy et al. 1990). The opr method (see figure 5) is applicable in any real
chaotic systems (also higher-dimensional ones) where output can be measured in an
electronic way and the control signal can be applied via a single electric variable.
All the signal processing is done in an analogue way thus is quick and efficient. Pro-
cessing here means detecting position of a one-dimensional projection of a Poincaré
section (map) which can be accomplished by window comparators and track-and-
hold circuitry. Figure 6 shows results obtained in a laboratory experiment with a
Colpitts oscillator operating in a chaotic mode (Kennedy 1994). The control signal
has been applied via a voltage-controlled resistor. The accessible goal trajectories
have to be determined by trial and error. Thus applicability of the control strategy
is limited to systems in which the goal is supression of chaos without more strict
requirements.

6. ‘Chaos-to-chaos’ control: synchronization as a control problem

It should be pointed out that synchronization and control problems of chaotic
systems have common points. In particular, synchronization can be considered as a
particular type of control problem in which the goal of control is to track (follow)
the desired (input) chaotic trajectory. It is only very recently that such a control
problem has been recognized in control engineering. The linear coupling technique
and the linear feedback approach to controlling chaos can be applied for obtaining
any chosen goal, no matter whether it is chaotic, periodic or constant in time. Using
the approach described by (Kocarev et al. 1993; Kocarev & Ogorzatek 1993) we can
even think of synchronizing/controlling chaotic systems to chaotic trajectories being
solutions of a qualitatively different chaotic system. We believe that this kind of
chaotic synchronization - control to a chaotic goal — could lead to new developments
and possibly new applications.

7. Discussion

The control problems existing in the domain of chaotic systems are far from being
fully identified, to say nothing about their solutions. Due to extreme richness of the
phenomena, one can treat every single such problem as a new challenge for scientists
and engineers. Among many problems to be solved let us mention here the basic ones:
How can the methods already developed be used in real applications? What are the

Phil. Trans. R. Soc. Lond. A (1995)
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limitations in terms of convergence, initial conditions, etc., of these methods? What
are the limitations in terms of system complexity, possibilities of implementations?
Are these methods useful in biology or medicine?

New application areas open up thanks to these new developments in various as-
pects of controlling chaos; these include neural signal processing (Mpitsos & Burton
1992), biology and medicine (Nicolis 1987; Garfinkel et al. 1992; Schiff et al. 1994) and
many others. Sensitive dependence on initial conditions - one of the key features of
chaotic systems - offers yet another fantastic control possibility which is now termed
as ‘targetting’ (Kostelich et al. 1993; Shinbrot et al. 1992); the desired point in the
phase space is reached by piecing in a controlled way fragments of chaotic trajec-
tories. This method has already been applied successfully for directing satellites to
desired positions using infinitesimal amounts of fuel (see Farquhar et al. 1985 and
references within) — chaos did the job!

Finally, we stress that almost all chaotic systems known to date have strong links
with electronic circuits; variables are sensed in an electric or electronic way, identifi-
cation, modelling and control is carried out using electric analogues, electronic equip-
ment and electronic computers are used as sensors and transducers. This presents
an infinite wealth of opportunities for researchers in the domain of electronics, and
not only for theoreticians. For the interested reader we included a comprehensive
bibliography containing also several review papers presenting the subject in a wider
aspect.

The author acknowledges the financial support received from the University of Mining and
Metallurgy, grant 11.120.15.
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cure 4. Double scroll chaotic attractor observed in the experimental system and two
examples of controlled orbits.
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igure 6. Chaotic attractor observed in the Colpitts oscillator and two of the controlled
periodic orbits.
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